Compare commits

...

7 commits

Author SHA1 Message Date
mo8it 61c7eaed62 box1 solution 2024-06-28 21:24:35 +02:00
mo8it f53d458920 iterators5 solution 2024-06-28 16:11:14 +02:00
mo8it 2af437fd90 iterators4 solution 2024-06-28 15:31:15 +02:00
mo8it 56a9197f55 iterators3 solution 2024-06-28 15:00:13 +02:00
mo8it eddbb97934 iterators2 solution 2024-06-28 02:48:21 +02:00
mo8it 4f71f74b44 Use todo!() instead of ??? 2024-06-28 02:26:35 +02:00
mo8it cf9041c0e4 iterators1 solution 2024-06-28 02:07:56 +02:00
14 changed files with 575 additions and 204 deletions

View file

@ -29,8 +29,8 @@ mod tests {
// TODO: This test should check if the rectangle has the size that we
// pass to its constructor.
let rect = Rectangle::new(10, 20);
assert_eq!(???, 10); // Check width
assert_eq!(???, 20); // Check height
assert_eq!(todo!(), 10); // Check width
assert_eq!(todo!(), 20); // Check height
}
// TODO: This test should check if the program panics when we try to create

View file

@ -1,8 +1,6 @@
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
//
// Make me compile by filling in the `???`s
fn main() {
// You can optionally experiment here.
@ -10,19 +8,18 @@ fn main() {
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn iterators() {
let my_fav_fruits = vec!["banana", "custard apple", "avocado", "peach", "raspberry"];
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
let mut my_iterable_fav_fruits = ???; // TODO: Step 1
// TODO: Create an iterator over the array.
let mut fav_fruits_iterator = todo!();
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), ???); // TODO: Step 2
assert_eq!(my_iterable_fav_fruits.next(), Some(&"avocado"));
assert_eq!(my_iterable_fav_fruits.next(), ???); // TODO: Step 3
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
assert_eq!(my_iterable_fav_fruits.next(), ???); // TODO: Step 4
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
}
}

View file

@ -1,31 +1,28 @@
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer. Follow the steps to complete the exercise.
// can offer.
// Step 1.
// Complete the `capitalize_first` function.
// TODO: Complete the `capitalize_first` function.
// "hello" -> "Hello"
fn capitalize_first(input: &str) -> String {
let mut c = input.chars();
match c.next() {
let mut chars = input.chars();
match chars.next() {
None => String::new(),
Some(first) => ???,
Some(first) => todo!(),
}
}
// Step 2.
// Apply the `capitalize_first` function to a slice of string slices.
// TODO: Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
vec![]
// ???
}
// Step 3.
// Apply the `capitalize_first` function again to a slice of string slices.
// Return a single string.
// TODO: Apply the `capitalize_first` function again to a slice of string
// slices. Return a single string.
// ["hello", " ", "world"] -> "Hello World"
fn capitalize_words_string(words: &[&str]) -> String {
String::new()
// ???
}
fn main() {

View file

@ -1,40 +1,26 @@
// This is a bigger exercise than most of the others! You can do it! Here is
// your mission, should you choose to accept it:
// 1. Complete the divide function to get the first four tests to pass.
// 2. Get the remaining tests to pass by completing the result_with_list and
// list_of_results functions.
#[derive(Debug, PartialEq, Eq)]
enum DivisionError {
NotDivisible(NotDivisibleError),
DivideByZero,
NotDivisible,
}
#[derive(Debug, PartialEq, Eq)]
struct NotDivisibleError {
dividend: i32,
divisor: i32,
}
// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// TODO: Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
todo!();
}
// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> () {
let numbers = vec![27, 297, 38502, 81];
// TODO: Add the correct return type and complete the function body.
// Desired output: `Ok([1, 11, 1426, 3])`
fn result_with_list() {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
}
// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> () {
let numbers = vec![27, 297, 38502, 81];
// TODO: Add the correct return type and complete the function body.
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
fn list_of_results() {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
}
@ -52,19 +38,13 @@ mod tests {
}
#[test]
fn test_not_divisible() {
assert_eq!(
divide(81, 6),
Err(DivisionError::NotDivisible(NotDivisibleError {
dividend: 81,
divisor: 6
}))
);
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
#[test]
@ -74,14 +54,11 @@ mod tests {
#[test]
fn test_result_with_list() {
assert_eq!(format!("{:?}", result_with_list()), "Ok([1, 11, 1426, 3])");
assert_eq!(result_with_list().unwarp(), [1, 11, 1426, 3]);
}
#[test]
fn test_list_of_results() {
assert_eq!(
format!("{:?}", list_of_results()),
"[Ok(1), Ok(11), Ok(1426), Ok(3)]"
);
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
}

View file

@ -1,9 +1,9 @@
fn factorial(num: u64) -> u64 {
// Complete this function to return the factorial of num
fn factorial(num: u8) -> u64 {
// TODO: Complete this function to return the factorial of `num`.
// Do not use:
// - early returns (using the `return` keyword explicitly)
// Try not to use:
// - imperative style loops (for, while)
// - imperative style loops (for/while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
@ -19,20 +19,20 @@ mod tests {
#[test]
fn factorial_of_0() {
assert_eq!(1, factorial(0));
assert_eq!(factorial(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(1, factorial(1));
assert_eq!(factorial(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(2, factorial(2));
assert_eq!(factorial(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(24, factorial(4));
assert_eq!(factorial(4), 24);
}
}

View file

@ -1,10 +1,8 @@
// Let's define a simple model to track Rustlings exercise progress. Progress
// Let's define a simple model to track Rustlings' exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try not to use imperative loops (for, while).
// Only the two iterator methods (count_iterator and count_collection_iterator)
// need to be modified.
// functionality using iterators. Try to not use imperative loops (for/while).
use std::collections::HashMap;
@ -18,24 +16,25 @@ enum Progress {
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if val == &value {
if *val == value {
count += 1;
}
}
count
}
// TODO: Implement the functionality of `count_for` but with an iterator instead
// of a `for` loop.
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// map is a hashmap with String keys and Progress values.
// map = { "variables1": Complete, "from_str": None, ... }
todo!();
// `map` is a hash map with `String` keys and `Progress` values.
// map = { "variables1": Complete, "from_str": None, … }
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
for val in map.values() {
if val == &value {
if *val == value {
count += 1;
}
}
@ -43,11 +42,12 @@ fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progres
count
}
// TODO: Implement the functionality of `count_collection_for` but with an
// iterator instead of a `for` loop.
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// collection is a slice of hashmaps.
// collection = [{ "variables1": Complete, "from_str": None, ... },
// { "variables2": Complete, ... }, ... ]
todo!();
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
}
fn main() {
@ -58,70 +58,6 @@ fn main() {
mod tests {
use super::*;
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(3, count_iterator(&map, Progress::Complete));
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(1, count_iterator(&map, Progress::Some));
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(2, count_iterator(&map, Progress::None));
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state)
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
6,
count_collection_iterator(&collection, Progress::Complete)
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(1, count_collection_iterator(&collection, Progress::Some));
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(4, count_collection_iterator(&collection, Progress::None));
}
#[test]
fn count_collection_equals_for() {
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
let collection = get_vec_map();
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state)
);
}
}
fn get_map() -> HashMap<String, Progress> {
use Progress::*;
@ -150,4 +86,68 @@ mod tests {
vec![map, other]
}
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Complete), 3);
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Some), 1);
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::None), 2);
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state),
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
count_collection_iterator(&collection, Progress::Complete),
6,
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::Some), 1);
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::None), 4);
}
#[test]
fn count_collection_equals_for() {
let collection = get_vec_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state),
);
}
}
}

View file

@ -4,45 +4,43 @@
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the `cons list` - a
// The recursive type we're implementing in this exercise is the "cons list", a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: the value of the current item and
// item in a cons list contains two elements: The value of the current item and
// the next item. The last item is a value called `Nil`.
//
// Step 1: use a `Box` in the enum definition to make the code compile
// Step 2: create both empty and non-empty cons lists by replacing `todo!()`
//
// Note: the tests should not be changed
// TODO: Use a `Box` in the enum definition to make the code compile.
#[derive(PartialEq, Debug)]
enum List {
Cons(i32, List),
Nil,
}
fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list()
);
}
// TODO: Create an empty cons list.
fn create_empty_list() -> List {
todo!()
}
// TODO: Create a non-empty cons list.
fn create_non_empty_list() -> List {
todo!()
}
fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list(),
);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_empty_list() {
assert_eq!(List::Nil, create_empty_list());
assert_eq!(create_empty_list(), List::Nil);
}
#[test]

View file

@ -886,28 +886,15 @@ https://doc.rust-lang.org/stable/book/ch11-01-writing-tests.html#checking-for-pa
name = "iterators1"
dir = "18_iterators"
hint = """
Step 1:
We need to apply something to the collection `my_fav_fruits` before we start to
go through it. What could that be? Take a look at the struct definition for a
vector for inspiration:
https://doc.rust-lang.org/std/vec/struct.Vec.html
Step 2 & step 3:
Very similar to the lines above and below. You've got this!
Step 4:
An iterator goes through all elements in a collection, but what if we've run
out of elements? What should we expect here? If you're stuck, take a look at
https://doc.rust-lang.org/std/iter/trait.Iterator.html for some ideas."""
https://doc.rust-lang.org/std/iter/trait.Iterator.html"""
[[exercises]]
name = "iterators2"
dir = "18_iterators"
hint = """
Step 1:
`capitalize_first`:
The variable `first` is a `char`. It needs to be capitalized and added to the
remaining characters in `c` in order to return the correct `String`.
@ -918,12 +905,15 @@ The remaining characters in `c` can be viewed as a string slice using the
The documentation for `char` contains many useful methods.
https://doc.rust-lang.org/std/primitive.char.html
Step 2:
Use `char::to_uppercase`. It returns an iterator that can be converted to a
`String`.
`capitalize_words_vector`:
Create an iterator from the slice. Transform the iterated values by applying
the `capitalize_first` function. Remember to `collect` the iterator.
Step 3:
`capitalize_words_string`:
This is surprisingly similar to the previous solution. `collect` is very
powerful and very general. Rust just needs to know the desired type."""
@ -932,8 +922,8 @@ powerful and very general. Rust just needs to know the desired type."""
name = "iterators3"
dir = "18_iterators"
hint = """
The `divide` function needs to return the correct error when even division is
not possible.
The `divide` function needs to return the correct error when the divisor is 0 or
when even division is not possible.
The `division_results` variable needs to be collected into a collection type.
@ -944,7 +934,7 @@ The `list_of_results` function needs to return a vector of results.
See https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect for
how the `FromIterator` trait is used in `collect()`. This trait is REALLY
powerful! It can make the solution to this exercise infinitely easier."""
powerful! It can make the solution to this exercise much easier."""
[[exercises]]
name = "iterators4"
@ -952,10 +942,10 @@ dir = "18_iterators"
hint = """
In an imperative language, you might write a `for` loop that updates a mutable
variable. Or, you might write code utilizing recursion and a match clause. In
Rust you can take another functional approach, computing the factorial
Rust, you can take another functional approach, computing the factorial
elegantly with ranges and iterators.
Hint 2: Check out the `fold` and `rfold` methods!"""
Check out the `fold` and `rfold` methods!"""
[[exercises]]
name = "iterators5"
@ -979,21 +969,16 @@ a different method that could make your code more compact than using `fold`."""
name = "box1"
dir = "19_smart_pointers"
hint = """
Step 1:
The compiler's message should help: since we cannot store the value of the
The compiler's message should help: Since we cannot store the value of the
actual type when working with recursive types, we need to store a reference
(pointer) to its value.
We should, therefore, place our `List` inside a `Box`. More details in the book
here: https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-boxes
We should, therefore, place our `List` inside a `Box`. More details in The Book:
https://doc.rust-lang.org/book/ch15-01-box.html#enabling-recursive-types-with-boxes
Step 2:
Creating an empty list should be fairly straightforward (Hint: Read the tests).
Creating an empty list should be fairly straightforward (hint: peek at the
assertions).
For a non-empty list keep in mind that we want to use our `Cons` "list builder".
For a non-empty list, keep in mind that we want to use our `Cons` list builder.
Although the current list is one of integers (`i32`), feel free to change the
definition and try other types!"""

View file

@ -1 +1,26 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
#[test]
fn iterators() {
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
// Create an iterator over the array.
let mut fav_fruits_iterator = my_fav_fruits.iter();
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple"));
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
assert_eq!(fav_fruits_iterator.next(), Some(&"peach"));
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
assert_eq!(fav_fruits_iterator.next(), None);
// ^^^^ reached the end
}
}

View file

@ -1 +1,56 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer.
// "hello" -> "Hello"
fn capitalize_first(input: &str) -> String {
let mut chars = input.chars();
match chars.next() {
None => String::new(),
Some(first) => first.to_uppercase().to_string() + chars.as_str(),
}
}
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
words.iter().map(|word| capitalize_first(word)).collect()
}
// Apply the `capitalize_first` function again to a slice of string
// slices. Return a single string.
// ["hello", " ", "world"] -> "Hello World"
fn capitalize_words_string(words: &[&str]) -> String {
words.iter().map(|word| capitalize_first(word)).collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(capitalize_first("hello"), "Hello");
}
#[test]
fn test_empty() {
assert_eq!(capitalize_first(""), "");
}
#[test]
fn test_iterate_string_vec() {
let words = vec!["hello", "world"];
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
}
#[test]
fn test_iterate_into_string() {
let words = vec!["hello", " ", "world"];
assert_eq!(capitalize_words_string(&words), "Hello World");
}
}

View file

@ -1 +1,73 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
#[derive(Debug, PartialEq, Eq)]
enum DivisionError {
DivideByZero,
NotDivisible,
}
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
if b == 0 {
return Err(DivisionError::DivideByZero);
}
if a % b != 0 {
return Err(DivisionError::NotDivisible);
}
Ok(a / b)
}
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
// Collects to the expected return type. Returns the first error in the
// division results (if one exists).
division_results.collect()
}
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
// Collects to the expected return type.
division_results.collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
#[test]
fn test_result_with_list() {
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
}
#[test]
fn test_list_of_results() {
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
}

View file

@ -1 +1,71 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// 3 possible solutions are presented.
// With `for` loop and a mutable variable.
fn factorial_for(num: u64) -> u64 {
let mut result = 1;
for x in 2..=num {
result *= x;
}
result
}
// Equivalent to `factorial_for` but shorter and without a `for` loop and
// mutable variables.
fn factorial_fold(num: u64) -> u64 {
// Case num==0: The iterator 2..=0 is empty
// -> The initial value of `fold` is returned which is 1.
// Case num==1: The iterator 2..=1 is also empty
// -> The initial value 1 is returned.
// Case num==2: The iterator 2..=2 contains one element
// -> The initial value 1 is multiplied by 2 and the result
// is returned.
// Case num==3: The iterator 2..=3 contains 2 elements
// -> 1 * 2 is calculated, then the result 2 is multiplied by
// the second element 3 so the result 6 is returned.
// And so on…
(2..=num).fold(1, |acc, x| acc * x)
}
// Equivalent to `factorial_fold` but with a built-in method that is suggested
// by Clippy.
fn factorial_product(num: u64) -> u64 {
(2..=num).product()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(factorial_for(0), 1);
assert_eq!(factorial_fold(0), 1);
assert_eq!(factorial_product(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(factorial_for(1), 1);
assert_eq!(factorial_fold(1), 1);
assert_eq!(factorial_product(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(factorial_for(2), 2);
assert_eq!(factorial_fold(2), 2);
assert_eq!(factorial_product(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(factorial_for(4), 24);
assert_eq!(factorial_fold(4), 24);
assert_eq!(factorial_product(4), 24);
}
}

View file

@ -1 +1,150 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// Let's define a simple model to track Rustlings' exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try to not use imperative loops (for/while).
use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if *val == value {
count += 1;
}
}
count
}
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// `map` is a hash map with `String` keys and `Progress` values.
// map = { "variables1": Complete, "from_str": None, … }
map.values().filter(|val| **val == value).count()
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
count += count_for(map, value);
}
count
}
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
collection
.iter()
.map(|map| count_iterator(map, value))
.sum()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
fn get_map() -> HashMap<String, Progress> {
use Progress::*;
let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);
map
}
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
use Progress::*;
let map = get_map();
let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);
vec![map, other]
}
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Complete), 3);
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Some), 1);
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::None), 2);
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state),
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
count_collection_iterator(&collection, Progress::Complete),
6,
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::Some), 1);
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::None), 4);
}
#[test]
fn count_collection_equals_for() {
let collection = get_vec_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state),
);
}
}
}

View file

@ -1 +1,47 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the "cons list", a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: The value of the current item and
// the next item. The last item is a value called `Nil`.
#[derive(PartialEq, Debug)]
enum List {
Cons(i32, Box<List>),
Nil,
}
fn create_empty_list() -> List {
List::Nil
}
fn create_non_empty_list() -> List {
List::Cons(42, Box::new(List::Nil))
}
fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list(),
);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_empty_list() {
assert_eq!(create_empty_list(), List::Nil);
}
#[test]
fn test_create_non_empty_list() {
assert_ne!(create_empty_list(), create_non_empty_list());
}
}